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We consider the system of equations of viscoelasticity in the following form [!]: 
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where x2, x2, x~ are Euler (Cartesian) coordinates; u i are the components of the vector of 
the velocity; gij are the components of the tensor of the deformations; S is the entropy; 
oij = --20gia~E/g~a i is the stress tensor; E = E(kl, k2, k3, S) is the densit~ of the internal 
energy; k i = 'g~i, gi are the principal values of the tensor gij; P = 0oddet ]Igijll is the 
density of the medium. 

The rlght-hand parts ~ij in the equations for gij take account of the inelastic deforma- 
tions and, in the given model, represent the Maxwell relaxation terms; ~ takes account of the 
rise in the entropy with inelastic deformations and is expressed in terms of ~ij from the law 
of conservation of energy K = --Egij@ij/E S. We choose ~ij in the following manner: @ij = 

2 ( ,  h , - L b o - ~ h  \ _~_gi~\,z i ..... ~ a), h i = In ki, @ij = --(I/T)gij (i # j), where ~(kl, k=, k3, S) is the char- 

acteristic relaxation time of the tangential stresses. For T, we shall use interpolation 
formulas given in [2], which represent a dependence of the form T = T(o, T), where o is the 
intensity of the tangential stresses; T is the temperature. Interpolation formulas for the 
internal energy are given in [3]. 

A flat, stationary wave is a solution of system (I) of the form u:(x~), u2 = u3 = 0, 
g:1(x~), g22(x~) = g3s(x:), gij = 0 (i # j), S(xl) (in what follows, we denote x = xl, y = 
x2, z = x~, u = u:, v = u~, w = u~). This solution satisfies a one-dimensional system of 
equations, which can be obtained from (i) 

OOSt ' 8'~ -~-SP~z-4 -- 0(puff6,) --0, 

0t ~ " 0x = 0, 

Oh~ h 1 -- h 2 --Oh"- -I-  U .--:- = 
cot a x  3 T  ' 

w h e r e  h i = l n g i ; p = p o e x p ( - - h l - - h , ~ - - h a ) ;  E = E ( / q ,  h.,, h3, S);  o ~ = p E h  i .  

Stationary waves satisfy the system 

[pul=0, [Pu ~ - z ~ l = 0 ,  
[ ( u~) ] U d h "  h i - - h ,  
pu E + T  - - u ~ x  = 0 ,  ~ = 3~ 

(2) 
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and the following conditions: 

with x § --~ 

u - ~ U o ,  P ~  Po, h'z - + 0 ,  S - ' , - O ,  

5~-x...~ O, dp dh~ dS h~-z ---) O, 7 ~ ; - ~ 0 ,  -~7"+ O; 

with x + +~ 

du 
t In ( P J P o ) ,  S ~ S , ,  ~ - +  O, u ~ u z ,  p - + p ~ ,  h . , ~  3 

~ x  dh~ dS ~'. O. -+  0; -~x --,- 0, ~-s 

Solutions of the system (2) were investigated i n  [4], where it was established that ( 2 )  has 
a continuous solution if uo is less than the rate of the propagation of longitudinal waves in 
an unstressed medium. Such solutions are called plastic waves; they will be discussed below. 

Let the solution of system (i) ui(t , x~), gij(t, x~), S(t, x~) be known. The system of 
equations for the propagation of perturbations is obtained by the substitution of the per- 
turbed solutions u i + 6ui, giJ + 6giJ, S + ~S into (I) and by discarding terms of the equa- 
tions with perturbations with an order higher than the first. Carrying out this procedure, 
we obtain the linear system 

O6;d i , 
Ot "" ox u 6x~ 
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\ Ogpq oz k : Ogpq Ox k 5 g p q -  
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ot ox u 6x I 

Our Ou a 

66S . 
Ot 
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. . . .  lL , - - - - -  - -Ci ,~mn : --Cil:O ~X h 2 OX a 6 [ Q z - -  
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06uc~ Ogis 6zta k- 
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06S OS 6• 6• 
. . . .  ua ": '- = 6uT. = - -  6gvq - -  ~ 6 S ,  

oxc~ ox~ " Ogpq 

=0, 

(3) 

1 &r I Ooi~, The coefficients of this system depend on the solution 
= -- ' " Ci,~o = - -  0"-'-'~ where Cikmn P ~ P 

of (2), i.e., only on x. 

We postulate that the perturbation of the front of the wave is "almost flat," i.e., that 
the derivatives with respect to y and z are much smaller than the derivatives with respect to 
x. Before passing on to the study of an arbitrarily perturbed front, we make an investiga- 
tion for one harmonic of an expansion of the perturbation in a Fourier series (it is assumed 
that such an expansion is possible). Let the perturbation not depend on z, while the depen- 
dence on y. is represented in the form ~u i = 6ui(t, x)ei~y, 6giJ = 8gij(t, x)eiwy, 6S = 
6S(t, x)el~y. For such perturbations we obtain a one-dimensional system of equations (we 

set ~u, = 0, ~gza = 6gas = 0) 

- -  E ~ 06hI O6ho "E " o&, o6~ (El,,h, -- (Eh,h: E~,,) - -- " , -- Eh,, • 
at u 7 ) 7  - -  -h,. ~ - -  ~ ( ~.t, 

O~h:, 06.'," du ! dpEn'h' 6 h ,  ! dpEh'h" 6 h  2 - -  
• --Ji---z - -  Et~,s ~ - ~ 6u  p c/x p dz 

] dpEhd'~ 6lz~ 
p dx 

o6h~ 56h, 
- -  - - -  U . - -  - -  - -  i)t Ox 

06h ~ 06h ._, 
11 

iJt Ox 

1 dpEj,,S 6 S  - -  io) Eht -- Eh: p clz g ~ - - g :  6 g  u = O ,  

OOu dlh 6U.  - ~h i o S ,  

dh2dx 6u  ir - a'~2Ohl 51 h __ ~0%" 6 S ,  
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a6h:~at ' a6h,~ax dhZdx 6~ ~- Oq~'a v u ~ - -  ~ 8h~ . 5 8 ,  

a• a• aSs_4_u a6s , dS 6 u =  6h z +  6S, 
at Ox i dx oh i ~ S  

a6v O6v Eh, --  EI,.~ O6g,, t d (Eh,--Eh..)6g~.,. - 

- -  i(o (E~,h,  Eh,)  5 h i  - -  io3 (Eh.,h, - -  Eh~) 6h~ - -  i c o  (Eh,h~ - -  Eh,) 6h. s - -  icoE~,s~S = O, 

O6g,., at% du , 1 
Ot ' ~x - dx dx 

w h e r e  xl'~-- x \, ~ " 3 "',; •  , 6h i = - ~  8g~. 

l e a !  f o r m  

This system can be brought into canon- 

- ( , I T  (o (r (o. ,, 

where Z and Y are vectors of dimensionality 5 and 2, respectively~ the matrices D ~ (5 • 5) 
and D ~ (2 x 2) are diagonal; the matrices D ~, D ~, A ~ (5 ~ 5), A ~ (2 • 2), P~ (5 x 2), P2 (2 
• 5) depend on x [more exactly, on the solution of (2)]. The components of the vectors Z 
and Y are expressed in terms of ~u, ~v, ~hi, ~gla~ ~S as follows: 

1 I 6C~x ' 

Y,  = i (Sv q- -~  b6g,.,_), Yo 

Z 3 = 6 h : ,  Z ~ = 6 h s ,  

=i (6v  - I b^~ \ '0~12) ' 

g 5 = 6 8 ,  

w h e r e  c = VEihih~ -- Eh 

(4) 

Eh, Eh~ 
iS  t h e  r a t e  o f  p r o p a g a t i o n  o f  t h e  l o n g i t u d i n a l  w a v e s ;  b - [ / g ~  

! / g ~ - - g l  

is the rate of propagation of the transverse waves. The nonnull elements of the ma- 
trices D t and Da are D~I = u-- c, D~2 : u + c, D~, = D~, = D~s = u, D~l = u -- b, D~: : u 
+ b. All the matrices D I, A i, and pi are real. 

We shall seek the solution in the form Z i : Zi(x)e Xt, Y• = Yi(x)elt; we obtain a problem 
for the eigelnvalues 

\~ 1~\0 ~ /  \ u d z  ky) AzIL ~ ] = to(p~ 0 )LY] (5)  

with theseboundaryconditions: forx § Za,Z3, Za,Zs, YI,Ya § O; with x + +~, Zi § 0. 

We shall consider the solution of system (4) with small values of m, i.e., with waves 
of perturbation with respect to y, whose length is great in comparison with the thickness of 
the front of the plastic wave, and shall seek the solution in the form of an asymptotic se- 
ries in powers of m in the vicinity of ~ = O. 

It is found that, with m = 0, the system (5) has X = 0 as an eigenvalue. The eigenfunc- 
tion corresponding to X : 0 can be obtained from Eqs. (2), describing the structure of :he 
plastic wave. If, for system (2), we write the equations for perturbations, we then obtain 
the system 

Eh~s 
Eh,_h ~ - -  Eh~hz-- (Ehl --  Eh~.) E S 

~9  = - -  P (61~1 -7  2~h._,) = 2p  u ~ - -  c~ 

&" . . . .  Z 69, ~S = 2 Zs "'~ 6h.. (6) 
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U 

~hd', Eh* h~ - -  ( Eh, - -  El'~ Ehts 
_ _  ES d6h~ ~_ 2 I 'hl  h., 1 h~ -- h,, T,% 

d x  3"~ ' ~ u2 _ r 

_3 
2 " 7: "" 

The eigenfunction for I = 0 is a nontrivial solution of this system and represents the dif- 
ference (in a linear approximation) between the given wave and the same wave shifted in a par- 
allel manner along the x axis [the shifted wave satisfies (2) by virtue of the arbitrariness 

in the choice of the origin of coordinates x = 0 with the search for the solution of (2)]. 
For the solution of (6), 60, 6ha, ~S, 6u + 0 with x + • Thus, with ~ = O, the system (5) 
has X = 0 as an elgenvalue and the eigenfunction Yo = 0, Z ~ [Z ~ is obtained by solution of 

O 
(6)]; here Z i + 0 with x + • 

We shall seek the solution of (5) in the form Z = Z ~ + ~Z ~ + ~aZ = + ..., Y = yO + ~yX + 
~ a y ~  + . . . ,  I = l ~ + ~l ~ + ~al~ + . . . .  

It is well known that l ~ = O, and that yO = 0 and Z ~ are known [obtained by solution of 
(6)]. We shall assume that I~ = O, 1 ~ = O. Setting I = 0 in (5), and substituting here the 
expansions of Z and Y, we obtain the resolvent for Z i and yi 

D ,  dZ~ 1 ~ p 1 y o  D 2 dY1 ~ A ~  p z z o .  " " ~ x  - r A Z  - :  = 0 ;  dx (7) 

The equation for Z * coincides with the equation for Z ~ and, since Z ~ = Z ~ does not contain 
new information on the behavior of the perturbations, it can be assumed that Z ~ = 0; we find 
Y~ from (7) as the integral of an equation with the known right-hand part P2Z~ For Z a, y2 

we have 

dZ"- dY~ + A ~ Y  ~ P~ O. D 1 z_ A1Z 2 -- p l y I ;  D~._z=. = = --~x ~ " (8) 

From this it can be seen that y2 = O, while Z 2 is found from (8) as the integral of an equa- 

tion with a known right-hand part P*Y~. The following terms of the expansions of Z and Y can 

be found in exactly the same way. 

Thus, we have Z = Z ~ + ~2Z2 + 0(~4), Y = ~Y~ + 0(~3). Consequently, a perturbation of 
the front of the wave of the form ei~y leads to the formation of shear waves of the pertur- 
bations on the order of ~ and to the appearance of longitudinal waves of the perturbations, 
which behind the wave lead to the redistribution of the principal stresses by an amount on 

the order of ~. 

We now pass on to an investigation of an arbitrarily perturbed front of a wave; we shall 
seek steady-state perturbations. In system (3), we discard derivatives with respect to t. It 
is well known that a system obtained in this aanner has a solution of the shifts of the wave 
along the x axis (6). We postulate that this shift, at each point, is due to a change in the 

surface of the front of the wave, which is given by the function ~(y, z). We shall assume 

that 

> > ~  > > ~ y y > >  . . . .  ~ > > ~ z > > ~ z z > >  . . . .  (9) 

Thus, we shall seek the solution of a steady-state system for perturbations of the following 

form: 

" .~ , z ) - L  ~ z )  ' ( 1 0 )  6gi~ = 6 g ~ j ( x ) ~ ( g , z )  ~ 6 ~ j ( x , g  6 g ~ ( x , g ,  ~ . . . .  
6 8  := 6 S ~  + 6 S l ( x , y ,  z) = 6 S ~ ( x , g , z )  ~ . . . .  

We assume that, in these expansions, each succeeding term is much less than the preced- 
ing, and that 8~ui/~x ~ 3~ui-I/~y. We write again in more detail the steady-state system 

obtained from (3): 
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06h~ 
Ox 

tt Ox ~ dx * c)y ' 

tt r26h:~dx ' dhadx 6U @ 5~,:~ (hl,  h,~,_ ha, S) ~- --oT'~ 

05g,, 0(% du 5g~., 4- 5g~ 06u 
u ~ + g~ oz + ~x - 7 - = - -  g~ o--Tjf ' 

5g~ s 05 u OSgl3 , 05w @ du 6 g l a 2 _ _ _ =  gi , 
u Ox v g'~ Ox' d---f ' "c Oz 

06g~ : 6g~.~ 06v 06w 
U Ox t ~---g~-'&-z - - g s ' o Y  ''' 

U-OxO6S ~ dxdS 6u -- 6z (h~, h.~, tz~, S) -: O. 

06u 0 6 o ~  05%~4 05a~ 
pu  Ox o~ oy " -  o--7-~ ' 

Pu 0"-"~- ---O--if--- Oy 0: ' 

pu Ox Ox = Oy ; Oz ' 

05u ~ dlh 5u @ 5~2] (h~, h.,, h a , S)  = O, 
Ox -~- d--~ 

(~l) 

We substitute the expansion (i0) into (ii). We obtain equations for ~u[, 6hi, ~g[j, ~S ~ by 
discarding all the remaining terms of the expansion and [taking account of (9)] the deriva- 
tives of 6u~, 5hi, 5g[j, ~S ~ with respect to y and z. 

The solutions of the equations for ~u~, ~h[, ~g~, 6S ~ are solutions of the system (6). 
They can be found in the form 6u~ = du/dx, ~h~(x) & dhi/dx , ~S~ = dS/dx, 6g~j = 0, ~v ~ 
= ~w ~ = 0, where u, hi, S is the solution of system (2). 

For ~u ~, 6h~, 6S ~ we have the same system as for zero approximations, since ~g~j = 0 and 
6~j = 0 (i # j), and we assume that 6u ~ = O, ~h~ = 0, ~S ~ = 0. 

For dv ~, ~g~, we have 

o ~  o~~ = ~ b  (~, z), 
pu Ox Ox 

u ~ + g = - - ~ - z  + - ~  u g m = - - g ~ S u ~  

Assuming that dv ~ = 6v*(x)$y(y, z), 6g,12 = 6gla(X)$y(y, z), for ~@(x), 6gla, we obtain a 
system of ordinary equations, leading to the system (7), which has been considered in the 
investigation of harmonic perturbations. Further, assuming that ~w* = dw ~ (X)~z(y , z), dg[s- 
6g~3(X)~z(y , z), for ~w ~ (x), 6g~a(x), we obtain exactly the same systems as for ga = ga, 

= ~ o ',)oal/~g,a = ~o~,/~g,~, and ~o o~a. 

Consequently, ~v ~(x) = ~w ~(x), dgz*=(x) = Sg~*,(x). 

And, for 5g~3, we obtain 

u_5~ ~--75g~3=-g~6v~ g85w%(~, z), 

since ~v ~ = O, ~w ~ = O; i.e., ~g~, = O. 

We now examine the second terms of the expansion (i0). For ~u 2, ~h~, ~S 2 we obtain 

06u 2 05o2t 
P~ #x Ox 

9 06 h-t 05 u 2 
Ox Ox 

, a~ 5S ~ O, 
dx I Oh i 
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- - - _  , -.-, , ~-- ox c~x ~ -  6hi" + ~S 6S~ 5v ~ (x)~uu (g, z), 

o 
= 6u  ~ :-  - ~  ~,~ = - - ~  58" = 5w ~ (x) ~ (y, z), 

Ox clx 

05S ~ dS 6U ~ O• 6 l t ~ -  O• 

We shall seek the solution of this system in the form ~u a = ~ua~(X)~yv + ~uaa(X)$zz (the 
remaining sought functions are represented in the same way). For terms prbportional to ~yy, 
we obtain a system reducing to (8), and for terms proportional to Szz we obtain the same sys- 
tem if ~h~ and ~ha change places. Thus, we obtain the solutions 

6S:  = 88 ~ (z) (L~ ~ ~=), 

where 6u a(x), ~h~(x), 5S a(x), ~h~(x), ~h~(x) can be fosnd from soluvions of system (8), which 
is written with the investigation of harmonic functions. 

For ~v ~, ~g~a, ~w ~, 5g~a the same equations are obtained as for the first terms of the 
expansion; therefore, it can be assumed that ~v a = ~w a = ~g~a = ~g~ = 0. And, for ~g~a, the 
following equation is obtained: 

05g~23 t 5g293 = -- g2~vt (X) ~yz -- ga 5wl  (x) ~yz = -- 2ga 8v~ (x) guz. u--~- -  ~- -~-  

From these formulas 
turbation of its surface 
proportional to ~. (y, z) y 
section of the front, of 

6h~ (~) ( ~  + ~ ) ,  ~h~ (~) ~ + ~h.~ (x) ~ z .  ~h~ (x) 

These deformations obviously leave a trace in the metal after 
was observed in the experiments described in [5]. 

Thus, it is established that the steady-state system for the perturbations (ii) has a 
solution of the following form: 

6u - 6u ~ (x) ~ (y, z) + 6u"- (x) ( ~  + ~ )  + . . . .  

~h~ = 617~ (x) ~ (y, z) + 6h~ (x) (~g~ • L.-) + . . . .  

58  = 5S ~ (x) ~ (g, z ) +  ~S ~ (x) (~u~ = ~ )  § . . . .  
2 6h s = 6h~ (x) ~ (y, z) -7- 6h2 (x) ~yy --  61~ 2 (x) ~zz + . . . .  

6v = 5v ~ (x) ~u + . . . .  5gr~ = 6g~2 (x) ~ ~- . . . .  

5 W = S U  l ( x ) ~ z -  " ' ' ,  6 g l 3 = ( ~ g l 2 ( x ) ~ z - -  - . ,  

5g.:a = 8g.% (x) ~u~ ~ . . .  �9 

it can be seen that a shift of the front of the wave, due ~o a per- 
~(y, z)~ leads to the appearance of transverse wave perturbations 
and ~z(Y, z), and these lead to the appearance, beyond the perturbed 
principal deformations of the form 

2 ~y ~r ~ 

the passage of the wave, which 

In conclusion, we give some values of ~h~, obtained by numerical calculations. For cop- 
per (equation of state from [3], relaxation time from [2]), immediately behind the wave with 

T = 10 -~ sec we have the following: 

compression behind wave pl/po = i.ii 

6h~ = 0.2889,  8h~ = 0.1853, 8h~ = 0 . i 8 5 4 ;  

compression behind wave pz/po = 1.09 
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6h~ = 0.2953, 5h~ = 0.2095, 5h~ = 02096; 

compression behind wave 0~/po : 1.05 

o 

8 h ~ =  0.3184, 5 h ~ =  0.2216, 6h~ = 0.2217. 

The author thanks S. K. Godunov for his continuing interest in the work and for his 
fruitful observations. 
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]EQUATIONS OF THE LINEAR THEORY OF ELASTICITY WITH POINT 

MAXWELLIAN SOURCES OF STRESS RELAXATION 

S. K. Godunov and N. N. Sergeev-Al'bov UDC 539.373 

i. General Solution. Relationships on the Characteristic 

The system being studied has the form 

(ix ax ay 

0 ~ av ach~ 8c~2 O, 
i o k' c)x ax ay 

aol  I o art, C = ,-p~ - (co 2 ~ a ~  ~x ~ 90 -- 25o) ~ = O, 

0~,, .~ o . _ o ~  # u  ,2 @v 
-- -- 2 0 5 ) = -  -- poCo j-~-j =: O, 

#(L~ o o /au au k 
- + -- o, 

) U Oat., _ a,  av ', " -- Pob~ + ~-z = O, 
62/: 

(i. i) 

where o~, o2a, ~3~ o~2 are the components of the stress tensor; u + U is the horizontal 
component of the vector of the displacement rate of points of the medium (U <bo <co <<U); 
v is the vertical component of the vector of the displacement rate of points of the medi- 
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