PERTURBATION OF THE FRONT OF A FLAT PLASTIC WAVE
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We consider the system of equations of viscoelasticity in the following form [1]:
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where x,, Xz, Xs are Euler (Cartesian) coordinates; uy are the components of the vector of
the velocity; gi4 are the components of the tensor of the deformations; S is the entropy;
oij = “ngiaaE/sgaj is the stress tensor; E = E(ky, ka, ks, S) is the density of the internal
energy; ki = /g;’ g4 are the principal values of the tensor gijs o = povdet !!gij[l is the
density of the medium.

The right-hand parts ¢ j: in the equations for giji take account of the inelastic deforma-
tions and, in the given modei, represent the Maxwell relaxation terms; < takes account of the
rise in the entropy with inelastic deformations and is expressed in terms of ¢j; from the law

of conmservation of energy k = —Egij¢ij/Es. We choose ¢34 in the following manner: ¢ij =
é;g”<hi__ﬁLif?‘;h;, hj = 1n ki, @4y = —(l/r)gij(i # i), where t(ky, kz, ks, S8) is the char-

acteristic relaxation time of the tangential stresses. For 7, we shall use interpolation
formulas given in [2], which represent a dependence of the form T = t(s, T), where o is the
intensity of the tangential stresses; T is the temperature. Interpolation formulas for the
internal energy are given in [3].’

A flat, stationary wave is a solution of system (1) of the form u, (%), ua = us = 0,
g11(xX1), gaa(x1) = gas(x1), gij = 0 (1 # 3), S(x:) (in what follows, we denote X = %1, v =
Xz, 2 * Xz, U = Uy, V = Uz, W = Us), This solution satisfies a one-dimensional system of
equations, which can be obtained from (1)
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where hy = 1Ing;;p=pjexp(—hy—hy—hy); E=E(hy, hy hy 8); ;= pEn,;.
Stationary waves satisfy the system

{pu] = Ov [Pu2 - Ul] = 01

- (2}
[pu(E+ —Lg—)——ucl] =0, u%’ =}}-1—3tl’

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No.
4, pp. 133-140, July-August, 1977, Original article submitted July 15, 1976.

0021-8944/77/1804- 0543507.50 © 1978 Plenum Publishing Corporation 543



and the following conditions:
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Solutions of the system (2) were investigated in [4], where it was established that (2) has
a continuous solution if uo is less than the rate of the propagation of longitudinal waves in
an unstressed medium. Such solutions are called plastic waves; they will be discussed below,

Let the solution of system (1) uj(t, xq), gij(t, %), S(t, %) be known. The system of
equations for the propagation of perturbations is obtained by the substitution of the per-
turbed solutions uj + 6uj, giy + Ggij, S + 88 into (1) and by discarding terms of the equa-
tions with perturbations with an order higher than the first. Carrying out this procedure,
we obtain the linear system
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1 % ol . The coefficients of this system depend on the solution
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of (2), i.e., only on x.

We postulate that the perturbation of the front of the wave is "almost flat," i.e., that
the derivatives with respect to y and z are much smaller than the derivatives with respect to
%x. Before passing on to the study of an arbitrarily perturbed front, we make an investiga-
tion for one harmonic of an expansion of the perturbation in a Fourier series (it is assumed
that such an expansion is possible). Let the perturbation not depend on z, while the depen-
dence on y is represented in the form Sug = Suj(t, x)elwy, 6gij = Sgij(t, X)elWy, 6 §6S =
§S(t, x)elwy. For such perturbations we obtain a one-dimensional system of equations (we
set §u; = 0, 8g,s = 68as = 0)
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if:—Q -u {;6;"" - Hdh; Su — iwby = — i};*: Shy — %ti 6S,
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where Z and Y are vectors of dimen51ona11ty 5 and 2, respectlvely; the matrlces p* (5 % 5)
and D? (2 x 2) are diagonal; the matrices D' D’, A* (5 % 5), A* (2 x 2), P* (5 x 2y, P* (2
% 5) depend on x [more exactly, on the solution of (2)]. The components of the vectors Z
and Y are expressed in terms of Su, 8v, Shy, 8gis, 85 as follows:

.4 : 1
21:'5““77'53501’ Z2=6u—97601, Zy=08h, Z,;=20h, Z;=2488,

Y, = i(ﬁv - -;l—bégl.z), Y,= i(év — ;%—bﬁgn), )
&3

. T
where ¢ = VEh,h; — Ep, is the rate of propagation of the longitudinal waves; b = ,/fgz hﬂ_gje
is the rate of propagation of the transverse waves. The nonnull elements of the ma-
trices D! and D? are Di, = u— ¢, Dzz = u + ¢, Dl =Di, =Dis =u, D, =u—1b, D3, =u

+b. All the matrices DL, Al, and Pl are real.

We shall seek the solution in the form Zj = Zi(x)elt, Yy = Yi(x)elt; we obtain a problem

for the eigenvalues
A [ZN D20 d (ZY (A0 N[ZY __ [0 PW(Z
HE ) b))+ (0 B ) o e o)) )

with these boundaryconditions: forx » —, 23,23, 24,25, ¥Y3,¥; > 0; with x + 4=, Z, » 0.

We shall consider the solution of system (4) with small values of w, i.e., with waves
of perturbation with respect to y, whose length is great in comparison with the thickness of
the front of the plastic wave, and shall seek the solution in the form of an asymptotic se-
ries in powers of w in the vicinity of w = 0.

It is found that, with u = O, the system (5) has A = 0 as an eigenvalue. The eigenfunc-
tion corresponding to A = 0. can be obtained from Eqs. (2), describing the structure of the
plastic wave. If, for system (2), we write the equations for perturbations, we then obtain
the system

- } S
By = Engn = (Eny— En) —=
80 = — p (80, — 28h,) = 2p i &,
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. E, —F
Bu = — = 8p, 88 =2———" 8h,, (6)
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The eigenfunction for A = 0 is a nontrivial solution of this system and represents the dif-
ference (in a linear approximation) between the given wave and the same wave shifted in a par-
allel manner along the x axis [the shifted wave satisfies (2) by virtue of the arbitrariness
in the choice of the origin of coordinates x = 0 with the search for the solution of (2)].

For the solution of (6), &p, Shp, 8S, Su > 0 with x = +», Thus, with w = 0, the system (5)
has A = 0 as an eigenvalue and the eigenfunction Y° = 0, z° [2° is obtained by solution of
"(6)]; here Zg + 0 with x = o,

We shall seek the solution of (5) in the form Z = 2° + wZ® + w®2% + ..., ¥ = Y° + ¥’ +
Wi+ oo, A =A%+t A L,

It is well known that A° = 0, and that Y° = 0 and Z° are known [obtained by solution of
(6)]. We shall assume that A' = 0, A* = 0. Setting » = 0 in (5), and substituting here the
expansions of Z and Y, we obtain the resolvent for 2Zi and Yi

ay?t
dz

DAL = Yo =0; D?

- AV = D220, (7)

The equation for Z' coincides with the equation for Z° and, since Z*' = Z° does not contain
new information on the behavior of the perturbations, it can be assumed that Z' = 0; we find
Y* from (7) as the integral of an equation with the known right-hand part P®2z°.  For 27, Y?
we have ’

A2 L gizi= YYD D2 Ay = Pt =0, (8)

From this it can be seen that Y® = 0, while Z® is found from (8) as the integral of an equa-
tion with a known right-hand part P'Y'. The following terms of the expansions of Z and Y can
be found in exactly the same way.

Thus, we have Z = Z° + w®2Z® + 0(u"), Y = w¥* + 0(w®). Consequently, a perturbation of
the front of the wave of the form elwy leads to the formation of shear waves of the pertur-
bations on the order of w and to the appearance of longitudinal waves of the perturbations,
which behind the wave lead to the redistribution of the principal stresses by an amount on
the order of w?, : :

We now pass on to an investigation of an arbitrarily perturbed front of a wave; we shall
seek steady-state perturbations. In system (3), we discard derivatives with respect to t. It
is well known that a system obtained in this manner has a solution of the shifts of the wave
along the x axis (6). We postulate that this shift, at each point, is due to a change in the
surface of the front of the wave, which is given by the function £(y, z). We shall assume
that

E>>§y>>§yy>>-~~'y§>>Ez>>§zz>>‘-.- (9)

Thus, we shall seek the solution of a steady-state system for perturbations of the following
form:

duy = dul (2) Sy, 2) + Oul (z, y. 2) + Ouf (2w, 8) + .. .,
Sgi; = g5 () & (¥, 2) — 8ghi (2, ¥, 2) = 8ghi (2, ¥, 2) + ..+, (10)
85 = 85 (2) & (y, 5) — 681 (z, y, 2) - 882 (x, ¥, 2) + ... .

We assume that, in these. expansions, each succeeding term is much less than the preced-
ing, and that 36ui/3x ~ d3Sui-1/3y. We write again in more detail the steady-state system .
obtained from (3):
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We substitute the expanmsion (10) into (11). We obtain equationms for Sul, sh{, Sggj, §8° by
discarding all the remaining terms of the expansion and [taking account of (9)] the deriva-
tives of 6uj, 6hi, 6gf;, 65° with respect to y and z.

The solutions of the equations for 8uf, Bhg sgi ijs 8S° are solutlons of the system (6,
hey can be found in the form 6u®(x) = du/dx, Shj(x) = dhy/dx, §s%(x) = ds/dx, 6g13 =0, §v°
= 6w’ = 0, where u, hi, S is the solution of system (2).

For Su', 8hj, 8S' we have the same system as for zero approximations, since 6g1j = (0 and
6cf; = 0 (4 # j), and we assume that Su' = 0, éhi = 0, 65* = O,

For &v', 8giz, we have

vt 06021
pU— — = 8058, (¥, 2),

aGg ) d .1 e
Th2 4 g, D0 L 2 gl + 2 Bl = — 10U, (3, 2).

Assuming that §v' = §v? (x)E {y, z), 8glz = 6gxa(x)€ (y, z), for 8v'(x), 6gi., we obtain a
gystem of ordinary equations, leading to the system (7), which has been considered in the
investigation of harmonic perturbations. Further, assuming that éw' = Sw'(x)£z(y, z), fgis=

Sgis (x)Ez(y, 2), for &w' (x), 8gl;(x), we obtain exactly the same systems as for gi = gs,
902,/9812 = 003:/9813, and 803, = 803a.

Consequently, 8v'(x) = Sw'(x), Sgi.(x) = 8gis(x).

And, for 8ghs;, we obtain

66go
U — 23 .= 6g23 = — 2,00, (y, 2) — gs0u%y (v, z),

since &v® = 0, &w® = 0y i.e., Sgis = O.

We now examine the second terms of the expansion (10). TFor su®, &h}, ¢5* we obtain

adu? 65“%1

pu éx dz
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547



38h3 dh s 509 p
2 3 2 72 N 4” )
U T b gy O 53 05T = 0 e (2,
ﬁéhg dha s g12  O%s 2
428 2 0 Zh3 8L T3 2 1 &
5z T d O "o, UM TGS 88% = dut (2) &: (4, 2),
9852 . dS ¢ 4 0 ;2 0% gog
7 T O, S — 5y 057 =0

We shall seek the solution of this system in the form Su® = Su??(x)E.. + Su??(x)f,, (the
remaining sought functions are represented in the same way). For terms proportional to E yys
we obtain a system reducing to (8), and for terms proportional teo £,, we obtain the same sys-
tem if Shz and Shs change places. Thus, we obtain the solutions

Su? = du {z) (§yy + Zzz)s iy = 60y () (Gyy = &52)s

552 = 882 (z) &)
8§03 () Byy -+ OR3 (2) By OBF = 815 (2) Gy + 613 (2) Eov

(be .

where &u®(x), &hi(x), 65°(x), 6hi(x), 8h¥(x) can be found from solutions which

is written with the investigation of harmonic functions.

of system (8),

For &v*, &gia, Sw®, 6gis the same equatlons are obtained as for the first terms of the

expansion; therefore. it can be assumed that sv? = 8w = 8gls = 6gis = 0. And, for dgls, the
following equation is obtained:
98g; | 1 . .
u a;3 T 8gds = — £,801 (2) &y, — £:0u (2) &y, = — 26a00" (2) &p-

Thus, it is established that the steady state system for the perturbations (11) has a
solution of the following form:

Su = 8u® (2) & (v, 2) - Sul (&) (Gyy + &22) + -+ s
8hy = SIS ( v:c) t(y, 2) = 6hF (1) gy + &2
85 = 88 () & (¥, 2) = 8% (&) (Syy + Eu) +
Shy = 813 (€) § (3, 2) + 813 (<) Eyy + 615 <x fuz = oens
8hg = Oh3 () & (y, 2) + 813 (2) &gy + O3 (2) &,y L .
dv =208 (2)§y + ..., Ognn= (Sclz(x) Sy v ey

Sw =80t (@)E, + ..., 8g3="082(x)& + ...,

883 = 55":523 ()&, + ... a

Y+,

From these formulas
turbation of its surface
proportional to & _(y, z)
section of the front, of

it can be seen that a shift of the front of the wave, due to a per-
£(y, z), leads to the appearance of transverse wave perturbations
and £,(y, 2z), and these lead to the appearance, beyond the perturbed
principal deformations of the form

Sh% (I) (Eyy +§zz)v 6]7‘% (x) Eyy + 6]23 (JJ) gzz’ 6h§ (Z) gyy +6hé(.’1)) gzz'

These deformations obviously leave a trace in the metal after the passage of the wave, which
was observed in the experiments described in [5].

In conclusion, we give some values of 6hi, obtained by numerical calculations. For cop-
per (equation of state from [3], relaxation time from [2]), immediately behind the wave with
= 10~ sec we have the following:

compression behind wave pi/po = 1.11

8h2 — 0.2889, 813 = 0.1853, Oh3 = 0.1854;
compression behind wave p./po = 1.09
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8hi = 0.2933, 643 = 0.2095, 8h; = 0.2096;
compression behind wave p:/po = 1.05

8ht == 0.3184, 6&h3=0.2216, 6h3=0.2217.

The author thanks S. K. Godunov for his continuing interest in the work and for his
fruitful observations.
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EQUATIONS OF THE LINEAR THEORY OF ELASTICITY WITH POINT
MAXWELLIAN SOURCES OF STRESS RELAXATION
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l, General Solution. Relationships on the Characteristic

The system being studied has the form

f o e — % 82—

- éo 2 Ju (.2 2\ v
L ~”'“*Pucoa—%‘\co~'2bﬂ) =0,

; 1.1
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» 0Cay 2 5 ,Ou ab\_
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- 00y, afdu | ov
/ S — — -
U o 0(61/ ‘ 0.7,} 0,

where 611, 022, Oss, C1a are the components of the stresgs tensor; u + U is the horizontal
component of the vector of the displacement rate of points of the medium (U<by <cq<<U);
v is the vertical component of the vector of the displacement rate of points of the medi-
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